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Low frequency electrostatic waves in weakly inhomogeneous 
magnetoplasma modeled by Lorentzian (kappa) distributions 

B. Basu 
Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts 01731, USA 

(Received 24 January 2008; accepted 17 March 2008; published online 25 April 2008) 

Linear dispersion relations for electrostatic waves in spatially inhomogeneous, current-carrying 
anisotropic plasma, where the equilibrium particle velocity distributions are modeled by various 
Lorentzian (kappa) distributions and by well-known bi-Maxwellian distribution, are presented. 
Spatial inhomogeneities, assumed to be weak, include density gradients, temperature gradients, and 
gradients (shear) in the parallel (to the ambient magnetic field) flow velocities associated with the 
current. In order to illustrate the distinguishing features of the kappa distributions, stability 
properties of the low frequency (lower than ion cyclotron frequency) and long perpendicular 
wavelength (longer than ion gyroradius) modes are studied in detail, and the results are contrasted 
with those for the bi-Maxwellian distribution. Specific attention is given to the drift waves, the 
current-driven ion-acoustic waves in the presence of velocity shear, the velocity shear-driven 
ion-acoustic modes, and the ion temperature-gradient driven modes. Growth rates of the drift wave 
instability and the current-driven ion-acoustic instability are reduced from their values for 
bi-Maxwellian distribution due to larger ion Landau damping rates associated with the kappa 
distributions. For the same reason, excitation conditions for these two instabilities are more stringent 
in the case of the kappa distributions. Growth rates of the velocity shear-driven ion-acoustic 
instability and the ion temperature-gradient driven instability are reduced from their values for 
bi-Maxwellian distribution as a consequence of the reduced adiabatic response of the electrons to 
the electrostatic potential perturbation. Frequencies of the drift waves and the ion-acoustic waves are 
also reduced in kappa-distribution plasmas due to the reduced adiabatic response of the electrons. 
[DOI: 10.1063/1.2906217] 

I. INTRODUCTION 

In collisionless plasma, particle distribution in velocity 
space can depart considerably from a Maxwellian. For ex- 
ample, in naturally occurring plasmas, such as plasmas in the 
planetary magnetospheres and solar wind plasma, particle 
velocity distributions are observed to have a prominent non- 
Maxwellian (power-law) high-energy tail (for some refer- 
ences to observations, see Ref. 1). The appropriate distribu- 
tion functions that can better model such particle 
distributions are the generalized Lorentzian distributions, 
also known as the kappa distributions." The kappa distribu- 
tion with a finite value of the spectral index K has a power- 
law tail at velocities higher than the thermal velocity and 
approaches a Maxwellian distribution in the limit as «•—>°°. 
Typically, space plasmas are observed to possess a spectral 
index K in the range 2-6. The presence of a substantially 
larger number of suprathermal particles, which distinguishes 
kappa distribution from a Maxwellian, can significantly 
change the rate of resonant energy transfer between particles 
and plasma waves. Hence, it could change the growth or 
damping rate of the plasma waves, the excitation conditions 
for instability, as well as the rate of anomalous transport 
processes that rely on resonant wave-particle interaction. It 
is, therefore, interesting to study the stability properties of 
plasma waves when the equilibrium (unperturbed) state of 
the plasma is described by a kappa, rather than a Maxwell- 
ian, distribution. 

In the last several years, plasma waves (electrostatic and 

electromagnetic) in homogeneous, unmagnetized and mag- 
netized plasma have been studied by various authors " 
using different types of kappa distributions for the equilib- 
rium state. In this paper, we concern ourselves with the elec- 
trostatic waves in spatially inhomogeneous, current-carrying 
anisotropic plasma, where the equilibrium particle velocity 
distributions are modeled by various kappa distributions. 
Spatial inhomogeneities, assumed to be weak, include den- 
sity gradients, temperature gradients, and gradients (shear) 
in the parallel (to the ambient magnetic field) flow velocities 
associated with the current. Such equilibrium plasma 
configuration is representative of many space and laboratory 
plasmas. We consider three specific forms of the kappa 
distributions, namely, kappa-Maxwellian, product 
bi-Lorentzian, and bi-Lorentzian. We first present the full 
dispersion relations for electrostatic waves, then present the 
versions of the dispersion relations that are more suitable for 
the study of low frequency (lower than ion cyclotron fre- 
quency) waves, and finally concentrate on the analysis of the 
low frequency and long perpendicular wavelength (longer 
than ion gyroradius) modes. In particular, the stability prop- 
erties of drift waves, current-driven ion-acoustic waves in the 
presence of velocity shear, velocity shear-driven ion-acoustic 
modes, and ion temperature gradient driven modes are ana- 
lyzed in detail. Such plasma modes are commonly observed 
in inhomogeneous plasma and are responsible for anomalous 
effects, such as diffusion, thermal conduction and resistivity. 
We also include in our presentation the corresponding dis- 
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persion relations for the bi-Maxwellian distribution and their 
analysis. The reasons for including the previously known 
results for the bi-Maxwellian distribution are: First, to check 
the correctness of the results for the kappa distributions by 
using the fact that the kappa distribution goes over to the 
Maxwellian distribution in the limit as K—>»; second, to 
compare and to illustrate the distinguishing features of the 
kappa distributions. 

The paper is organized in the following way: In Sec. II, 
we describe the general mathematical formalism for the deri- 
vation of dispersion relation in weakly inhomogeneous mag- 
netoplasma. In Sec. Ill, we present the dispersion relations 
for the different equilibrium distribution functions described 
in Sec. II. Section IV is devoted to the analysis of the low 
frequency, long perpendicular wavelength modes for the dif- 
ferent equilibrium distribution functions. The results are 
summarized in Sec. V. 

II. GENERAL MATHEMATICAL FORMALISM 

A. Equilibrium state (spatial inhomogeneity 
along the x-direction) 

The dynamics of nonrelativistic, collisionless plasma is 
determined by the Vlasov equation 

vxB\    d_ 

d\ 
i+v.v+^li 
dt mn 

/a(r,v,r) = 0,      (1) 

where fa is the single-particle distribution function, qa is the 
charge, and ma is the mass of the plasma constituent a (a 
= e for the electrons and a=i for the ions), while E and B are 
the electric and the magnetic field, respectively. The distri- 
bution function /^ for the steady equilibrium state of spa- 
tially inhomogeneous plasma immersed in a uniform mag- 
netic field B0 obeys the time-independent Vlasov equation 

-V+-^vxB0.^)/>,v) = 0 
mj: 

(2) 

and it can be constructed from the constants of motion of the 
charged particles. If we adopt a cylindrical coordinate system 
in velocity space with its z-axis parallel to B0, so that 
vx=v^ cos <p, vy=Vj_sir\(p and vz = \-B0/B0-vu, then the 
constants of motion are x+vy/D,a, y-vx/ila, v\(.=v^+vz), 
and vg. Here, Q,a=qtfi()l(mac) is the cyclotron frequency of 
the charged particle species a. We assume that the plasma is 
inhomogeneous only along the x direction. Then, the most 
general fa0 is a function of g=x+vy/Cla, v\, and vu. That 
fa0=fao(€*v2± >v\\) >s a solution of Eq. (2) can be verified by 
direct substitution. If the spatial gradients are weak, 
fao(€>v±<vi) can be expanded in a Taylor series about £=0. 
Thus, retaining only the terms that are linear in the gradients, 
we have 

/aotewl.wn) " [1 + #£(w:.Ui,)]f«o(i>i.i>ii). (3) 

l/Uwi.Wn) where /;'a0(i>i,i;ii)=/ao(£=0,i;5_,i>ii) and 

= [(<?/aO/'<?£V/ao]f=o> which contains the essential features of 
the inhomogeneous plasma including density gradient, tem- 
perature gradient, and shear in the flow velocity. In the fol- 
lowing,   we   consider   the   different   specific   forms   of 

fao(d>v±<v\) mentioned in the Introduction, and derive the 
respective expressions for ML. 

(a) Bi-Maxwellian (BM) 

Citv\,v,) = nM) 
^eiASeM) 

Xexp (4) 

where uM{t;) = vu-VM{^) and VM(0 is the inhomogeneous 
parallel flow velocity. Then, according to Eq. (3), we find 

1 

L    L„ ^9all      Lgal \ OaX 

~i      1     ua       ua.[*aQ (5) 

and 

rBM/   2        \ 

7,31   0a±9a 
exp 

#a±       &a\l' 
(6) 

Here \ILna={d\nnMld£)^0, \ILm={d\n BJdt)^, 
\/L9al = (d\n eaJd&^, and VaQ=(dVa0/dei=0- It is to be 
understood that nM, VM, 0^, and 0al appearing in Eqs. (5) 
and (6) denote their values at £=0. We have suppressed the 
arguments for simplicity in notations. The function 
f^(v2

±,Vi) is normalized to the density nM, and the thermal 
speeds 8M and 6al are related to the particle temperatures, 
TM and Ta±, by ^)l=27'all/ma, 02

aL = 2Tal/ma, where the 
definitions of 7„ and Ta± are 

ia\ dvL nMTaf = 2mna    dv Ldv^v L(v%-VMYFM(v x,vu) 

-/ 

(7) 

na0Tal = Trma\ dvJvwV^Fj.v^Vf). 

(b) Kappa-Maxwellian (KM) 

wcj v) idH EW  

x 1 + »2J0 exp 
^i(fl 

(S) 

where T is the gamma function and u^i^^Va-V^^). 
Then, according to Eq. (3), we find 

I_ J_ 
L,      L,n. 

I 

j«oi; *, 
1- 

,_Li+!fcp.)[1+.' 
'II,,   8~Q &~„ "^. 

-I 

(9) 

and 
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FKM(„2 „ "> • "aO V(K) 

•**»<>!., 0MKll2r(K- 112) 7a±. "all ' 

„2    \ 

X    1+- 
A 

exp 
it 

(10) 

As before, nM, VM, 0M, and 0al in Eqs. (9) and (10) refer 
to their values at f=0. The function F•(ux,i;||) is normal- 
ized to the particle density nM, while 6M and 0a^ are related 
to the particle parallel and perpendicular temperatures, 
denned by Eq. (7) as 02

M = [(2K-3)/K](TMima) and 
02

al = 2TaL/mafoT K>3/2. 

(c) Product Bi-Lorentzian (PBL) 

CL(t,vU) = ^ ««o(0 ruu+i) 
^(ouex'rn^+m) 

i + 

i+ 

«A($ 
-U+l) 

*^.i(i) 

-Ui+D 

(11) 

where «„n(^) ^ f| — V,
cK)(^). Then, according to Eq. (3), we 

find 

(d) Bi-Lorentzian (BL) 

f^v\,vt) = 
V(K) 

^(:(fl«i^"2n^l/2) 

1 + 
-(«+!) 

(14) 

where uM(^) = U||-V„o(£)- Then, according to Eq. (3), we 
have 

/. 

1 

'-'BcM 

1 ,2 

-Sal A 

2       2(K+1) 
 +  

1   u2
M    u^V'ri 

L -feu "a\i v~ 

K0- K0T a 

•1 

(15) 

and 

^>i."„)= "<.o r(/c) 
^,2^^^"2r(f-i/2) 

X    1 + 
«<^ K01 

-(*+!) 

(16) 

1     J^    _1       ^2_    2(KX + 1)    1     i>x 

£    ^*a    ^-«oii    ^tei *x      Lga± 0rax 

2(/C||+l)/_l_M2j| + M2!|V^o X    1 + 
*1^L 

X    1 + 
Kll0dl 

(12) 

and 

^<>U): r(K„ + i) 
^/2^x^ii^/2r(K„ + i/2) 

X   1 + 
"A 

-(K|l+D 

1 + 
KL&al 

-(«1+1) 

(13) 

As before, M^, V^, 0ali, and 0aX in Eqs. (12) and (13) refer 
to their values at £=0. The function F•L(u2

L,U||) is normal- 
ized to the particle density nM, while 0M and 0al are related 
to the particle parallel and perpendicular temperatures, 
defined by Eq. (7), as fl^ll=[(2/C||-l)/if||](7'a||/ffi„) and 
<£x = [(*cx-l)/*fx](27„x/m0), for K||>l/2 and KX>1. 

Here we have allowed the possibility of different values of 
the spectral index in the parallel and the perpendicular direc- 
tions. If Kn=K± = K, (13) corresponds to the product bi- 
Lorentzian listed by Summers and Thorne.1 

where nM, VM, 0M, and 0al in Eqs. (15) and (16) denote the 
values of these quantities at £=0. The function f^(v\,V\) is 
normalized to particle density nM, while 0ali and 0aL are 
related to the particle parallel and perpendicular tempera- 
tures, defined by Eq. (7), as f^|=[(2/c-3)//c](r„n/m„) and 
0l± = [(2K-3)/K](Tal/ma), for *>3/2. 

It may be verified that for all the choices off„o(^,v± ,V\) 
the equilibrium values of the density and the temperatures 
are: n a(x)=nM( \+xlLna), Ta[[(x) = TM(\+x/LTai), and 
Tal(x) = Tal(l+x/LTal) to the lowest order in (xlL), where 
LTM-LMI/2 and LTal=Leal/2 are the scale lengths of the 
temperature gradients. Charge neutrality of the equilibrium 
state requires Lnt-Lni. There is an equilibrium current den- 
sity, which is a combination of the diamagnetic current den- 
sity and the current density due to flow velocity along the 
ambient magnetic field B0. The self-consistent magnetic field 
due to the equilibrium current density is assumed to be neg- 
ligibly small compared to the main ambient magnetic field 

Bo 
For simplicity of notations, we assumed above that the 

spectral index K has the same value for both electron and ion 
distributions. However, the analysis in the following sections 
can be easily generalized to allow different values of K 

for the two charged populations. In Fig. 1 we have presented 
G{u) = (2ir)3,2(VTail/na0)Jdv^v1FM as a function of 
u = {v,-VM)IVTM, where Vr-=(T'al/ina)l/2, for the four 
model velocity distributions described above. It may be veri- 
fied that G(u) for bi-Lorentzian is same as that for kappa- 
Maxwellian. As is well known in plasma physics, the func- 
tion G(u) plays important role in determining the stability 
properties of plasma waves. 
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G(u) 
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FIG. 1. Comparison of G(«)s(2ir)3'2(V7-ol|/na0)/dy1i;i/
r^ vs 

u = (i>ii-VM)IVTall. Solid curve is for bi-Maxwellian distribution, dashed 
curve is for kappa-Maxwellian (K=3) distribution, and dashed-dotted curve 
is for product bi-Lorentzian (KJI=3) distribution. G{u) for bi-Lorentzian is 
the same as that for kappa-Maxwellian. 

i+2 

k,  1 

d\- •^(/O 
(x)- k„v, + nCl„ 

ilaL       dv« dv, 

where Jn(/u.a) is the Bessel function of the first kind and 

In this paper we wish to study in detail the low fre- 
quency waves, {(oa,kllVTaj)<^.ila, in inhomogeneous 
plasma, where u>a=io-k^V^. The reduced dispersion rela- 
tion, which is adequate for the study of such low frequency 
waves, is obtained by first rewriting Eq. (19) as 

x 
k, 1 d 
7T- + * — •2(a>-fc|Un)- 

dv-. 
'FM(v\,v^ 

B. Perturbed state (electrostatic perturbation) 
and dispersion relation 

We now consider electrostatic perturbation so that 
the perturbed electric field £](r,r) is given by Ex{r,i) 
=-V<£,(r,f), where <f>\(r,t) is the perturbed potential. The 
equations to be solved are the linearized Vlasov equation 
for the perturbed distribution function /ol(r,v,f) and the 
Poisson equation for </>)(r,r). They are 

:() (20) 

after using nil^cj-kpj + nila-iw-k^v^ and the Bessel 
function identity £„./;;= 1, and then keeping only the n=0 
term in the summation. The result is 

a   mjc- J I dv2 

•/Q(M«) 

bi-k«V« 

X\ki+^J (21) 

^ + V.V + %XB„)4 /„,(r,v,f) 

- —V0,-|-/aO(r,v) = O (17) 

and 

It can be verified from the results presented in Sees. Ill and 
IV that, under the conditions (u>a,knVTa^<g:ila, the n^O 
terms in the summation in Eq. (20) are negligibly small com- 
pared to the n = 0 term, for all the equilibrium velocity dis- 
tributions. 

In the next section, we present the dispersion relations 
that are obtained for the different equilibrium distribution 
functions after substituting the specific expressions for ML 
and FM into Eqs. (19) and (21) and evaluating the velocity 
integrals. 

V2<Mr,r) = -47rX<7„ I dv/«i(r,v,f). (18) 
a J 

III. DISPERSION RELATIONS FOR THE MODEL 
DISTRIBUTION FUNCTIONS 

In solving Eqs. (17) and (18) we adopt the "local 
approximation" " and assume that the perturbed quantities 
have space-time dependence of the form, A[(r,r) 
= A|(k,w)exp(i'k-r-('wf), where k-(0,k1,kl). The "local 
approximation" requires jfc± S><9/<9x3> ML and pJL<^\, 
where pa is the gyroradius of the particle a and L represents 
the typical scale length of spatial inhomogeneity. As is well 
known, the "local approximation" retains the leading-order 
effects of the spatial gradients. Using Eq. (3) for/^r.v) 
and solving Eqs. (17) and (18) by the standard procedure, 
the linear dispersion relation for electrostatic waves in inho- 
mogeneous plasma, under the "local approximation," is ob- 
tained as 

16 

(a) Bi-Maxwellian (BM): When Foo(i>* ,i>;i) is a bi- 
Maxwellian, given by Eq. (6), and ML is given by Eq. (5), 
Eq. (19) yields the dispersion relation 

i-S^Sr^A.) 

L't>n I   1 n / tr. 

*lflril   Oa+"flc 

211,, 

1 

'-'Ball 

z•(La) . 1 / .    k±V0 

k«e„ 
+ ~,\x 

• „o 

k   H, 

zaM(U  =o. (22) 
QaLffaU     k'ff^,     Jd£„a 

wherejo;a=4^^ia0/m„, Pa=k2
L0

1
al/(2(1;), <aa=a-kuVM, 

^na=(Ba+nila)/(kn$M), and ZBM is the well-known plasma 
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dispersion function associated with the bi-Maxwellian paral-       Here, ^a=(x)a/(\j2knVTM). 
lei velocity distribution, defined by 

ZBM(0 

1 r 
VVJ-OO 

exp(-s2) 
ds ,    lms>0 

5-S 
(23) 

(b) Kappa-Maxwellian (KM): When FM(v\ ,vv) is a 
kappa-Maxwellian, given by Eq. (10), and ML is given by 
Eq. (9), Eq. (19) yields the dispersion relation 

and by the analytic continuation of Eq. (23) for Ims^O. 
Using &M=2TJma, &aL = 2TaLlma, Lm=2LTM, and 
LBal = 2LTal, where \/LTM=(d\n T^ldg)^ and l/LTal 

= {d In Ta /dg)^, we rewrite Eq. (22) in the more familiar 
form, 

i - 2 T^T- 2 r>j 
k'\ 

,    !"     c 

i rn 

zBM(U , i   + 
\2*NVrali    2 

nil 

Va\~ 2k2 V2 
•'"ll 'Toll dL 

ZBM(£J    =0.       (24) 

i-2?&2r.08. 
*%„= 

2H„ U, «(l 

KM/ 

i + 2y3a r; 
J0all Jtfal * n 

ZMV1/     K 

k«e„ 2\    fc, a, 

II„L 9a W 
"77^     )TV

Z
K (s„a)f = 0. 

*: 
(27) 

where /3„=*i^/(2ft;), sn
x
a=(a>a+Mn„)/«:ll^l), and Z• 

is the plasma dispersion function for the kappa-Maxwellian 
distribution, defined by 

Here X-D^, =7'„||/(4-7r^r^nct0),  Vri\=LnJLTM, Vax=LR0/LTa±> 
^*a^kxTJ(mJlJ.na), ^„a=(a>a+«fta)/(V2/cnyraii), 

rn(ba)=I„(ba)exp(-ba), where /„ is the modified Bessel 
function, and T' is the derivative of T„ with respect to its 
argument ba=k±Ta±/(mJll). 

The reduced dispersion relation for the low frequency 
waves in bi-Maxwellian plasma, derived from Eq. (21), is 

2o/„ 2<oi 
i +2 Tif-ii - r„(A,)] - 2 -j^r0(y3j 

J_    J^ + ^U\ZBM(|J 

2l    *„na   ^aLMk2^Jd^a    
VWJ 

(25) 

or, in terms of fca, 77^, 77^, and iota, is 

Y 1 - va{ba) _ Y r0(Aj 

^"^Dal A^Xf 

1 r;    <^ 

2 r0/ ^fc,^ 
zBM(U 

+ 2V    *„n     ^tfv2 -^-zBM(0 
roil' "So 

= 0. 

(26) 

Z•(s) ^ 
ru) 

TT"V'TU- 1/2) 

•r <£j 

(s-sXl+S2/*)*' 
ImsX) (28) 

and by the analytic continuation of Eq. (28) for Im q^0. It 
was first introduced and studied by Hellberg and Mace.9 Us- 
ing fl„l|=[(2*c-3)/#c](7'al|/m(,), &aX = 2TaLlma, LM=2LTan, 
and LSaX = 2LTa±, we rewrite Eq. (27) in terms of ba, TJM, 

rfal, and (ota as 

i-2 • 
2*    \r> „ ,    J /2K-3^"

: 

2 rn(fea)j 
a   k~KDM2K    3,.., 2 K 

1 ~ ^VaU* baVa±jr J0>*a+ —nila 

vz^(C)   1 
+ 2 

1 
"<2k\\VTan 

- Va\\ 
2£2V2 
^"•11 vTa\l d* 

r^(Of = o (29) 

where now <a42K/(2/c-3)]"2(o>a+Hna)/(\2A- VTall). 
The reduced dispersion relation for the low frequency 

waves in kappa-Maxwellian plasma, derived from Eq. (21), 
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2wt 2o>:„ 
i + 2 T^f-D - r„(A,)] - 2 ^r0(/3o) 

o   *  "ol a   *  ''all 

JfcXnf i _ i + 2/?ar;K
M(C 

or   v ^na 'Ball '0a± * 0 

_ *L _^0 _ ±JLLJHa_] J_yKM,K, \ _ n 

(30) 

or, in terms of ba, rjM, T)al, and «>*„, is 

v i - r0(fra)   v r0(^„) 2K 
i+2-ei—-2 

*-Vr * ^DaW^-K     3 

2<c-3 

2 K 

I : 

IV, 
2 lo/v2*||Vrrt| .£,. z•K) 

k^V'M 
*a<»a\ 

,    _|    1 "J-       CM     1 y*>M/    K\ 

+ 5V1"ikin.-,'-2^va
rjA:z" (° 

= 0. 

T. Here, s^=[2«r/(2/f-3)]I/2a>a/(\2A: Vroll). In the limit as 
"-°°> <.-».£•• <-««. Z•^ZBM, and thus Eqs. (29) 
and (31) become identical to their bi-Maxwellian counter- 
parts Eqs. (24) and (26), respectively. 

(c) Product Bi-Lorentzian (PBL): When F^u2,^) is a 

product bi-Lorentzian, given by Eq. (13), and ML is given 
by Eq. (12), we use the series expansion of J"n given by 

p-\n\ r(2P+\) 2 y (-1)" '"' IUP+U    (Ma 

"       Hn|(p-N)!(p!)2r(/> + M + i)\2 

2;- 

(32) 

in Eq. (19) and, after carrying out the integrations in v„ 
-v± space, obtain the dispersion relation 

,   v^fcv y      *j.r(*,L-p)/*2
lflalV 

*    C«ll«=- 

^oil 

2H 

rux) 
2p 

4ft, 

a   \ "no 

*0„ 2\ 

^BL«a)    =0 (33) 
fia^ffall       *lf A      / d<t 

for /<^>p. Here <^a=(a)a+nfta)/(fc||0all), 

(-ir|B|     r(2p+l) 
g|n|'p  p!(p-W)!r(p + H + i)' l   ' 

and Z^BL is the plasma dispersion function for the product 
bi-Lorentzian distribution, defined by 

ds 

(5-s)(l+52//Cll)'
t»+1, 

(35) 

(3D     tt-rJ^+Lf VirKn   1 (K,|+1/2) J_; 

lms>0 

and by the analytic continuation of Eq. (35) for Ims^O. 
Apart from the multiplication factor, this function is the same 
as the dispersion function introduced and discussed by Sum- 
mers and Thome.' Using ^=[(2^-1)/ K^(TM/ma), 0i

al 

= [(KL-\)/KL](2TaL/ma), Lm=2LTall, and LBaX = 2LTal 

we rewrite Eq. (33) in terms of ba, r/M, rjal, and w,a as 

i-2 
1 2Ki        y     y <r(«±-P)/,Cx-l        YUlK,- 

nft 
7"ax \K± ~ 1 / "J   ^VTM        2 

z?L(C) +1 
fa n„ 

a0 

2#(|| 

"^afe+lfta 

l-277«i+/"7«i)w« 

'/air 2*M 
•/•« *: 

<BL«a)      =0, (36) 

where now s:a=[2/fll/(2Kll-l)]
1/2(a>a+nno)/(V2^lVrJ. 

The reduced dispersion relation for the low frequency waves in product bi-Lorentzian plasma, derived from Eq. (21), is 

y2a^y       K>'±-
ir(K±-p+\)(k2

±0iiy_Y 2u>;a
+*       <r(«± -p)[k\tal V 

~ a **«** IXirJ I 40»  /  ' ? ^W*0*     n«J      I 4fta ; 

J^J__J_ + ^^^+l^_^_^^W 1    o 
2ft Of   v °na fa«„ fa   ft„        ft^fa2^,/<*< 

(37) 

or, in terms of &„, 77^, r/a±, and w„a, is 
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1-2 
I 

•So., 
<r(^-P+i)//c±-i 

pl/2/ 

K) -2 
2*„ V    <r(^-P)/^-i, > 

2, go.«.—~—;—I ~—bn 
* KDaWiK«      l p=0 r(*cx)     \ 2#CX 

2K„ v2*i|VTrtl A- a. 2k;V2
T„J ds Ta  ' 

= 0 (38) 

for KX>/>. Here <=[2K„/(2#fir l)]"2ffl(,/(^l|V7-J. The 
condition xx>p, which arises from the integral 
fo^i;x

p+1[l+u1/(«:1<£x)j-(^+1), does not present any 
difficulty in using Eqs. (36) and (38) for the study of long 
perpendicular wavelength (&„<§; 1) modes, including 
finite-6„ corrections, if KX S 2. 

At this point, let us verify that Eq. (36) —» Eq. (24) and 
Eq. (38) —• Eq. (26), in the limit as KVI,KL—>=°. To do this, 
we note that s£„->£,„, Z? 
and that K

P
LT(K1 -/j)/r(/cx) 

result, Eq. (36) becomes 

BL • ZBM in the limit as *c,|—><», 
1 in the limit as K  —> °o. As a 

+0C +0C 

!-2^1— 2   2 «N.p(-f , 
a   " ADalln=-« p=|n| x ^ 

i    l     J. 1      i. r««  n 
^ '                  'ol 

t   v' «„„(«„+nft„) 
•  _ Kl   * a0 _   

H  "a z*|| 'Tall 

z•(U 
V2*„Vr 

we once again use the series expansion for J~, given by Eq. 
(32), in Eq. (19) and after carrying out the integrations in 
U||-i>i space obtain the dispersion relation 

,   v_^v v      WK-P) rra.\' 
•* **&.£. i*H*   Hie)   [ml 7ai\n=-<» p=\n\ 

[ma\Lna  L 

&m( K-p\nila 

1 

k,0„ 
Z81^" ) ^K.p^na' 

C.(0 + ;' 

/: i BL, W„ + nil. 

n^  *?<£,  /<*& *•' O0=o (42) 

for K>/?. Here s*a=(aJa+nna)/(<C|l^al|) and we have intro- 
duced the generalized dispersion function Z8.1:, with 
<7=0,1,2,3,..., for the bi-Lorentzian distribution, defined by 

X-fzBM(U (39) 

Next, multiplying Eq. (32) by v1e\p[-mav2
L/(2Tal)] and 

integrating from vL=0 to ux=°°, we find 

2  8\n\.p   T J    " 'nibateM- *J - ^(fcj (40) 

V(K) 
7BL(C\ m —  -«*w   ^*1/2ru-i/2) £ </.v 

(5-S)(1+.S
2
/K)

K
-'

?
' 

lms>0 (43) 

and by its analytic continuation for Ims^O. We note that 
Z^L

q=Q is identical to the dispersion function Z^M defined by 
Eq. (28). This has to do with the fact that Jdv±vLF^ 
-Sdv^v±F^. Differentiating Eq. (43) with respect to s and 
then performing integration by parts we find the relation 

and, hence, 

2 Pg\n\,p[ -f)  = b^Tn(ba) = bj"n(ba). (41) 

7BL/ —ZBL(c) = - 
2(K-q)      T(K)T(K-q+M2) 

K        \_T(K-\l2)Y{K-q+\) 

+ <Z K,q-\ W (44) 

It is then evident that Eq. (39) is identical to Eq. (24) by 
virtue of Eqs. (40) and (41). In a similar manner, it can be 
verified that Eq. (38) -+ Eq. (26), in the limit as KU,KL—>°°. 

(d) Bi-Lorentzian (BL): When F^u'.i;,,) is a bi- 
Lorentzian, given by Eq. (16), and 11L is given by Eq. (15), 

which can be used to generate Z for 0=1,2,3,... from 
ZB^=0. As in the previous cases, we use &^„ = [(2K-3)/ K] 

x(TM/ma), 6i± = [(2K-3)/K](Ta±/ma), LenU=2LT«, and 
L$a± = 2LTa± to express Eq. (42) in terms of ba. rjai, ijax, 
and oj^a. We obtain 

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://php.aip.org/php/copyright.jsp 



042108-8        B. Basu Phys. Plasmas 15, 042108 (2008) 

i-2 
1        2/c    ^   ^ Kpr(K-p)(2x-3i   ^ 

k ^DaU^K     3 

2(K-P) TM    n£la    ^BL 

1 
VaU+PVaj 

' \2A- VT„ 

2K-3 roi V2*||Vran 

2*-3\1/2    1 
2K   I    +2 

w*a(wa + nna) 

2jt2V7 
Ta 

jE^or-o. 
where now <^[2/c/(2/c-3)]1/2(a3a+nna)/(^llVr„ll). 

The reduced dispersion relation for the low frequency waves in bi-Lorentzian plasma, derived from Eq. (21), is 

2     +x 

i _ Y 2tlJpg Y      *p- 
"^,£1^"      ru-1/2) \ 4a-: "orl C=l 

r(«-p+l/2)/*i^\'    v2cu- i_        Y      P«Y 
2 " ^ 7,2-32  ^ «0„ 

KTU-P)/*!^'' 

^pTo-"   r(K) 

2n„ \L„„ 

1 2p 
— + — 
Lean    Lga±l k\\6. 

7BL,   K^U ,       k±V'a0        *±<£ll      <»a 

*„ a   aj.^k^Jd,: **y • 

4H2 

d 
-ZBLi<s") 

or, in terms of ba, rj^, r)al, and wta, is 

'     „ -t2xL,2v-3pt
g0'"      rU-1/2)      I   4.   N     r^L,2*-3^*° 

KPr(K-p)(2K-3 

2K-3 

2K 

1 2 

2 / V2*||Vral|    
P 2\       *„ il„ 2^V^,/^ 

'     Y(K 

d 

4 K 

/« 

(45) 

(46) 

(47) 

r 

Here <iKa=[2K/(2K-3)]mo)J{yj2kllVTJ. It can be verified by 
following the analysis given for the product bi-Lorentzian 
that Eq. (45) -» Eq. (24) and Eq. (47) -» Eq. (26) in the limit 
as K—•». 

ZBM(£) = /vVexp(- $) - i( 1 + ^5 + • • • j,    |fi| » 1 

(49) 

in Eq. (26) and then keeping the leading terms, we find 

IV. LOW FREQUENCY AND LONG PERPENDICULAR 
WAVELENGTH (b„«1) MODES 

In this section, we present analysis of the dispersion re- 
lations for the low frequency waves, in order to illustrate the 
differences between the equilibrium velocity distributions. 
For analytical tractability we restrict ourselves to the situa- 
tion where |wf/(\2knVm) | <g; 1 and {Hj/(\l2k9VTa) | »1. Fur- 
thermore, we consider long perpendicular wavelength modes 
such that be~0 and fc,<l. These are the limiting conditions 
under which drift waves, ion-acoustic modes, and ion tem- 
perature gradient driven modes are excited. We start this sec- 
tion with the review of the previously known results for the 
bi-Maxwellian case and then discuss the various kappa- 
distribution cases. 

(a) Bi-Maxwellian (BM): We refer to Eq. (26). Using 
Fo(be)~\. r0(bj)=\-bi, k\Dell<^\ (quasineutrality condi- 
tion), and the expansions18 

zBM(£,) = ;v7r(i-£+•••; 

|&| « 1 • (48) 

2& l-r£+ 

1 + -^ + ^ *n a 
-[\-b,(\ + viL)] 

k, II.      a), 

k2c2 

+ t\ — 
2 KV- 

+1 

1 + *i#_. 
*n ft. 

i-r^i 

2\kVTi, 
l_

k±Yk_ 
k» ft 

-biVii 
J"^r+i'7%jexp 

2k2 V2 

1"2%I 

= 0, 

(50) 

where    ps = cs/ilt,    c~=Telllmj,    and    we    have    used 

We first consider the drift waves (w. — to,,,). which are 

realized when klt is so small that kucs <C u)te. Drift waves have 

been discussed extensively in the plasma-physics literature.19 

Here we discuss some of the salient properties. The relevant 
dispersion relation that follows from Eq. (50) is 
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k   V' ' 

*|flr 

ITT    to, 
+ i\l  

2 Jfc„V. Te 

.    kxV'M    <**<(       1 

KM   II, to,   \ 2 

(77       W«W< / to? 

O        K|| Vm \     ZK|| Vr,|| 

and its approximate solution is 

Re a, = A(kltk^[\ -b,{\ + Vn)]<»*e 

(51) 

(52) 

/ 7r Re to 

-|1 + ^lReS' 

1-2%» 

%iw* 

Xexp 

Vm    Rew, 

' 77 v^vv 
Rea>,  \2 

where 

A(kL,ka) = 2 _2' l + c^/^x^o/^+^p; 

(53) 

(54) 

We recall here that (Oj=u>-knVin and we=(o-kuVeQ=(Oi-knVd, 
where Vd- Ve0- Vi0 is the drift speed of the electrons relative 
to the ions. The solution describes drift waves (in a reference 
frame moving with the ion flow velocity) modified by the 
presence of temperature gradients (ifeihVii) anc* sheared 
electron flow velocity (V^). Typically, \(kj ^(V'^/flJl is 
very small compared to unity and may be neglected. The first 
term in Eq. (53) represents resonant interaction of electrons 
with the waves (Landau resonance) and it gives rise to insta- 
bility when the proper condition is met. The last term in Eq. 
(53) represents resonant interaction of ions with the waves 
and leads to Landau damping or growth depending on the 
sign of ?7,||. However, this term is small for a>,-~to.,,;»k^cs 

and 7cl|S7,||. Equations (52)-(54) indicate that both 77,-1>0 
and Vd > 0 favor the excitation of the drift waves, whereas, 
57,1!>0 and % >0 oppose the excitation. For instance, if the 
small quantities, b„ |(K±/)t||)(V^0/fte)|, and the ion Landau 
resonance term, are neglected in Eqs. (52)-(54), then we 
have 

Re to, a 

Im u) 

l+*iP?' 
(55) 

Re to, 

7T Re to, 

2 *I1*'7V,|| 

k\P; *IIV* 
2       o VeW + ' l+kzys     2 

—   .        (56) 

Solution (56) indicates instability (Im to>0) for Vd>0 and 
7jeU<0. When J7,N>0 and the first term within the parenthe- 
ses of Eq. (56) can be neglected in comparison to rjen/2, the 

instability condition (lmw>0) for the current-driven drift 
wave is 

Vd > — Veil 
2*n 

(57) 

On the other hand, for Vd=0 (no current) and r/, >0, the 
instability condition (Im w>0) is 

1       ,    *M 
2Ve"     \+k2Js 

(58) 

2 „2 If 77,11=0, the instability condition is satisfied with any k±p 
>0. This is a well-known result and the instability is often 
referred to as the "universal" instability. Next, we consider 
(iij~kncs^>iott. Assuming further that k\f^4H\, the disper- 

sion relation (50) simplifies into 

Xexpl - 

_2 
toil 

2*11 Vm 

= 0, 

• + A i^t 

TjwhVjiw 

where A is the velocity shear parameter defined by 

l-jkJk^VlJil,) 
\* = 

i+ik±ikwjiiey 

(59) 

(60) 

If A >0 so that A is real, the approximate solution of Eq. 
(59) is 

^P-A|- :A2 
3 2 

'    A 2 xexp(-—A (61) 

It describes current-driven ion-acoustic waves (in the refer- 
ence frame moving with the ion flow velocity) in the pres- 
ence of velocity shear, which becomes unstable (Im o>>0) 
when Vd (i.e., current) exceeds a threshold value V*j, where 

3S.A+(a)M(5i4. 
Cs \mel    \ r,n eXPi"2^A- 

(62) 

The second term on the right-hand side, which represents ion 
Landau damping, can be made smaller by increasing the 
value of Tel,/Tin and A, so that the instability can be excited 
with a lower value of V°d. In the absence of velocity shear 
(i.e., A2=l) and for electron-proton plasma, Eq. (62) yields 
V°d/cs= 10.13,2.38, 1.17, and l.Ofor 7,/7",,= 10, 15, 20, and 
30, respectively. In the presence of velocity shear (i.e., 
A2 + 1), minimizing Eq. (62) with respect to A we find that 
the minimum value of V°d/cs is obtained for A = Am, where 
A_ is to be determined from 

1 + 
.1/2/ T 3: 

rr     Ai 3--?A 
"2T A~ 

(63) 
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For electron-ion plasma, Eq. (63) yields A.m= 1.478, 1.221, 
1.066, and 0.88 for Ta/Ta-10, 15, 20, and 30, respectively, 
i.e., Am increases as T^IT^ decreases. Consequently, ion 
Landau damping for smaller values of Te[l/Ta is reduced by 
the velocity shear. Substituting these values in Eq. (62) we 
find the minimum values of v2/Cj=1.56, 1.28, 1.12, and 
0.92 for Ta/Ta=l0, 15, 20, and 30, respectively. Since 
j(jkx/A:il)(V'^0/Oe)| is typically negligible, A can be made 
larger than unity for |V-0/ft,-| < 1 by adjusting the values of 
*i/ifcii. Comparison with the homogeneous (no velocity 
shear) case indicates that ion velocity shear allows excitation 
of ion acoustic instability with significantly smaller currents 
for lower values of Tell/Tm, and that the threshold current 
does not have as strong a dependence on Tell/Tin as it is in the 
homogeneous case. This benign effect of velocity shear was 
first pointed out by Gavrishchaka et al.,20 who showed by 
numerical solution of the dispersion relation (26) (without 
the density and temperature gradients) that the threshold cur- 
rent for ion-acoustic instability is significantly smaller in the 
presence of shear and that the threshold value is almost in- 
sensitive to variations of Ten/Tiv over a wide range of values 
of 7*,n/7*fl| (from 0.1 to 10). 

If A2 < 0 so that A is pure imaginary, and if the small 
imaginary terms are neglected, Eq. (59) describes a purely 
growing mode with 

w, = i|A|*||C*- (64) 

referred 
21 

to   as   the   shear-driven   ion-acoustic This   is 
instability.' 

Another instability that has been discussed in the litera- 
ture is the ion temperature gradient driven instability.""" 
This instability, like the shear-driven instability, does not rely 
on or is not affected by Landau resonance (wave-particle 
resonance). It is realized when rja^> 1 and in the limits when 
(50) is reduced to 

k2c2 
1     .        M     a r\ 

It has the solution 

(65) 

:(i±iS) 
,2  2 1/3 

W*1'7/!! (66) 

where the upper sign (+) is for a>mir)in>0 and the lower sign 

(-) is for w,j)/j|<0. 

In the remainder of this section, we examine the same 
low frequency waves when different kappa distributions are 
used to describe the equilibrium plasma state. 

(b) Kappa-Maxwellian: The series and asymptotic ex- 
pansions of Z^M(s), which appears in Eq. (31) and which is 
the same as ZxM(s) introduced by Hellberg and Mace,   are 

ivirr(*c) 
Z•(S,): 

K"T(K-1/2) 
(!-<+•••: 

ZHs,) = 

2K- 

Z\T7T(K) 

2K + l  , 

i 

kl < i, 

(67) 

KU2r(K-l/2)(\+S2/K] 

<5,-\      2K- 3S^ 
(68) 

for integer values of K. For noninteger (excluding half- 
integers) values of K, the series expansion (67) remains un- 
changed; but the first term in the asymptotic expansion (68) 
is modified as i—>/'-tan KIT. For half-integer values of K, 

one can first relate Z^M to Z* of Summers and Thorne' [see 
Eq. (60) of Ref. 9] and then use the series and asymptotic 
expansions of Z for half-integer values of K given by Sum- 
mers et al." The result is that the series expansion Eq. (67) 
remains unchanged; but the first term in the asymptotic ex- 
pansion Eq. (68) is modified as I'-TT—*/'ir+log(a/<;1"), where a 
is some number. Thus, noninteger (including half-integer) 
values of K will add very small corrections to the real part of 
the frequencies of the waves considered here. We neglect the 
modifications and use Eqs. (67) and (68) in the following 
analysis. Using r0(fc,)=l, r0(/>,-)= 1-/»,-, K\D, < 1 
(quasineutrality condition), and the expansions (67) and (68) 
in Eq. (31), and then keeping the leading terms, we find 

2K- l/      k,K 
1 + 

2K-3 \       L il 
il£»      ,   1.2 „2 

+ *1P;-—[1-*<U+ >7a)]- 

+ i\j-F(K)—— 
WTeW 

2K /   *, v; 1 "(0 

2K- 3 \      it,, nf 

"II ii,        W; 

~ ZVel 

2K   (       k±Vn\     ">•<(       1 
2-K^v-TlnJ-^:v-2v«-h-rf- 

\I-F(K)[ '• 
2      '\k„V- n 

w"      2K- 3 w, 

k2c2 

<«, 
3 

^If-jJ^I"*''/! 

X    1 + 
I «" 

2K-3k2V2 

-(K+1) 

= 0, (69) 
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where 

F(K) 
T(K) 2 K 

K''T(K-1/2)\2K-3 

1/2 

(70) 

The other notations are the same as before. It may be verified 

that F(K) — 1 and Eq. (69) -• Eq. (50) as K^OO. 

In the drift wave approximation (coi~a)t:e^>kllcs), the 

dispersion relation becomes simplified as 

2«-W, . t,Vi 
2,-3\'+rai+^--[1-*'<1+"J] 

/ If   , •>   w<- 

kuV- Te 

2 K 

w„ \       2 

2K- 3 \       &n iL 

+ J-\/^F(K) 
*i,V- mi 

l + lK-jI'ftll-Mu 
<o; 

2K-3*?V£ 

x  l + _j *[_ 
2K-3*X, 

-U+l) 

= 0 

and its approximate solution is 

Re 5,.SE S(*x,*n)[l - *,.(! + 7?a)K 

/7T ,   ,    RewJ /       1 
Im to s ^/-fi(/; ,*N)F(K)——i    i --%u,f 

2 *iiV•l\      2 

2«   f.    i/rtL   - Vra     1 + ——  Re to. - to*.  
2#c-3\       k„aj *eVm 

(71) 

(72) 

1     / Re w, 

1 + 
1     / Re to, 

2K-3\K,,V- 

2K-3\/:]|V
,
7-,1| 

(73) 

Re a), = 

Im to 

(2K-\V(2K-3) + k2
lP

2
s' 

(75) 

Re to, 
>(K)^ 

A
;
P;-1/(2K-- 3) 

(2K-1)/(2K-3) + /C1PS
2 

1 2K   ^ 
~ - VeII + -        , 2 2K- 3 wtf 

(76) 

A comparison of Eq. (75) with Eq. (55) shows that Re w, is 

reduced from its value for the bi-Maxwellian distribution, as 

(2K-1)/(2K-3)>1. When % >0 and the first term within 

the parentheses of Eq. (76) can be neglected in comparison 

to »fci|/2, the instability condition (Im co>0) for the current- 

driven drift wave is 

Vd> 
2K-3\U)*' 

2K   I 2k 
(77) 

A comparison with Eq. (57) shows that the threshold current 

for the instability is reduced from its value for the bi- 

Maxwellian distribution by the factor (2K-3)/2K. In the ab- 

sence of current (Vd=0) and for rje >0, the instability con- 

dition is 

1 K->;-1/(2K-3) 

2?7f"<(2K-l)/(2K-3) + *2
1p; 

(78) 

If %=0, the instability condition is satisfied for k\p2
s 

>1/(2K-3), which is more stringent than the condition 

k\p2>0 obtained for the bi-Maxwellian distribution. 

Next, we consider the ion-acoustic waves for which 

uJi~kacs^>iote. Assuming further that k\p2
s<SL\, the disper- 

sion relation that follows from Eq. (69) is 

2K-1       2*fe2    .   F*  ( s   2K 
  - A*—3- + / \ —F(K)-  
2/c- 3 to"        V 2 2K- 3 

*nV. 
, + A2Zk 

Te 7*iii ^iiVr,'ii 
1 + 

2 K   3 *H VJJII 

-(*+!) 

= 0 

and its approximate solution for A2>0 is 

Re cot = \Jc^s, 

(79) 

(80) 

B(kL,kn): 
1 

[(2K- 1)/(2K-3)][1 +(k1/kl)(V'e0/ile)] + kip2' 

(74) 

Both the real and the imaginary parts of to are modified from 

their values for the bi-Maxwellian distribution. The ion Lan- 

dau damping term in Im to (third term within the curly 

bracket) has a power law, instead of exponential dependence 

on Re to,/jt||Vr,n when Re COJ/k]{Vm^> \ and, hence, is larger 

than that for the bi-Maxwellian distribution in the parameter 

regime Re tijIk^Vj^ 1. For the limiting conditions that led 

to Eqs. (55) and (56) we now find 

Im to 

Re w, 

IT  , .    2K 

2K-1/7^ 

2K-3\7\„   ' 

in, 

3 2 

2K-3 Tfj 

-(*+!) 

where 

\l = 2K-} 

2K- I 
A2. 

(81) 

(82) 

We again note that both the real and the imaginary parts of to 

are modified from their values for the bi-Maxwellian distri- 
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bution. In particular, the power-law, instead of exponential, 
dependence of the ion Landau damping term (second term 
within braces in Im w) on Ten/Ta, when T^/TR^ 1, results in 
larger ion Landau damping and changes the instability con- 
dition significantly. The threshold value V°d for instability is 
now given by 

S-A. 2K- 1 

2K-3 

I : 
ZkA2 
Tm    " 

3/2 

X    1 + 
Tel 

2K-3 T, 

-(«+!) 
(83) 

In the absence of velocity shear (A2=l), A
2

K=(2K 

-3)/(2K-\)< 1. If we take K=3, for example, then 
A2 = 3/5. For electron-proton plasma, Eq. (83) yields Vi

dlcs 

s 13.73, 8.31, 5.52, and 3.05 for Tell/Tiit=l0, 15, 20, and 30, 
respectively. For a smaller (larger) value of K, the values of 
VjICs are larger (smaller). A comparison with the corre- 
sponding results for the bi-Maxwellian distribution shows 
that the threshold currents are larger for the kappa- 
Maxwellian distribution due to the larger ion Landau damp- 
ing rates. 

In the presence of velocity shear (A2¥= 1), minimizing 
Eq. (83) with respect to \K we find that the minimum value 
of V°/cs 

from 
is obtained for A„=A. where \Km is determined 

A2
m T^   2K-i/miy

fl/rH\
M 

2K-3TJ 2K-3\mJ    \7"J 

2K-\T, £!!A2 A'-3 A'.   (84) 

Using Eq. (84) in Eq. (83) the minimum value of V^/cs is 
obtained as 

vS 
s ' mi 

[2K/(2^-3)](7fll/7,ll)AL-2 
[{2K- l)/(2K-3)](rfll/7,,)A2

m-3   "m' 
(85) 

For electron-proton plasma and for K=3, for example, 
Eq. (84) yields A ^s 1.986, 1.681, 1.496, and 1.269 for 
7^1/7)11=10, 15, 20, and 30, respectively, i.e., AKm increases 
as Teil/Tm decreases. Substituting these values into Eq. (85) 
we find the minimum values of 1^/^3:2.43, 2.06, 1.83, and 
1.55 for 7fll/7",lt= 10, 15, 20, and 30, respectively. For a 
smaller (larger) value of K, the minimum values of V°dlcs are 
larger (smaller). Thus, in the presence of velocity shear, the 
threshold currents for the ion-acoustic instability are reduced 
more significantly for smaller values of Tell/Tin, as in the case 
of the bi-Maxwellian distribution, but the reduced values are 
still larger than those for the bi-Maxwellian distribution. This 
again is due to the increased ion Landau damping rates re- 
sulting from the kappa-Maxwellian distribution. 

The previously mentioned shear-driven ion-acoustic in- 
stability, which is excited when AK<0 (i.e., A2<0), is now 
described by 

5i = j|AjA||C,. (86) 

When compared  with the bi-Maxwellian result [see Eq. 
(64)], the growth rate of the instability for kappa-Maxwellian 

distribution is reduced by the factor [(2K-3)/{2K- l)]"2 for 
the same value of |A|. 

Referring  to  Eq.   (69),  the  ion  temperature gradient 
driven instability, mentioned above, is described by 

2K~ 1 _,_ klc] 
2K -3      w. 

with the solution 

(87) 

a>,= -(l±n/3) 
2«c-3    k2c2 

2K-l(w„,?7(il)
2 

1/3 

***iViii- (88) 

The upper sign (+) is for a>„,,77,n>0 and the lower sign (-) is 

for (otirf,,|| <0. When compared with the bi-Maxwellian 

result [see Eq. (66)], growth rate of the instability for 
kappa-Maxwellian distribution is reduced by the factor 
[(2K-3)/(2K-1)]

1/3
, with other parameters remaining the 

same. 
(c) Product Bi-Lorentzian (PBL): The dispersion func- 

tion Z^BL(s). which appears in Eq. (38), is similar to Z*(s) of 
Summers and Thorne. The series and asymptotic expansions 
of Z*(s) for integer and half-integer values of K are given in 
Refs. 1 and 25, respectively. Mace and Hellberg"6 extended 
their results to noninteger (excluding half-integer) values of 
K. The series expansion of Z (q) is same for all real values of 
K, and, as explained above [Sec. IV (b)], the modification of 
the asymptotic expansion ofZ*(q) due to noninteger (includ- 
ing half-integer) values of K may be neglected in our analy- 
sis. We, therefore, use the expansions for integer values of K, 

given by 

„BL      _   i\;wrU, + l) 

K,,    T(K[1+ 1/2) 
1       *"+1    2 1- <+••• 

ZlTfc,): 

2KH + 1    /      2KH + 3 2 

 s, 1-—:—«v + 
K \ .1K 

i\-n-r(K| + 1) 1 

K^rK+i^Hi+sr/K,,)"*1 

kl< 1, 

(89) 

1  / Kn 1 

s,\      2K|,-1<?* 
|s,| » 1.      (90) 

Since be = 0, we keep only the p=0 term in the electron sum 
in Eq. (38), and in order to retain effects of the order of bi we 
keep p=0 and p=\ terms for ions. Using £o,0=l< £o,i=-2 
[see Eq. (34)], k\De]<Si 1, and keeping the leading terms we 
find 
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2#c,i + 1 

i+^Mrf- to 

2KII + 2/I + ^KO 

2/fii -1 \    *,, n„ 

fc, a, 

-— i-r% 
w„ \       2 

-(l + jy/ii-i^ii) 

•IA/-F(K||) 

,2  2 

1 ~ZVi\i-biVi± 
hi;   \ I 

k]c] 

2 

1      <»* 

wn 

2 Mi -1 to, ^ + \K\\ + -]VB\-biVu 

(91) 

Here, 

(92) 

and the other notations are the same as before. 
The simplified dispersion relation in the drift wave ap- 

proximation (aJ;~w„»A:||Cj) is 

2«„+l/.    ktV'ea 

2K„ - 1 \       k„ il 

+ i\j-F(Kll)—— 
*II»T«II 

to, 1 + ^7T ) + k\p] - —[1 - *.U + 7a)] 

2*ll + 2/'i + *iV^ 

WW       1 
—   1 -»%i 

2K,I - 1 \       ku Q, 

+ i\ —F(K»)  

1 + 1 *II + - ]Vm-l>iVi± 
_J £. 
2K„-U

2
V

2
, 

1        <5f   \-("»+2) 

+ - j-^-l      =o 

and its approximate solution is 

Re to, s C(ikj.,*ii)[l - b,{\ + yi±)]u>*„ 

/ 7r Re to,-1 
Imcos A/-C(*^,*||)F(iC||)—— 1 I 1--J7,n]w„ 

2/cll + 2/      ^V^      - V• 
-    1 + ——- Reu,- u>±e  

2/cN-l\       k.ilj *eVm 

(93) 

(94) 

*n+ 2 )' 
1     / Re to, 

1 + 
2ic,,-l\*llV. 

Re a): 

'Till 

2#t||- 1 \*i|Vrin/ j 

-(«l+2)l 
(95) 

a^,*,,^ 1 

[(2K + 1)/(2K„ - 1)][1 + (MWKiAUl + *ift2' 

(96) 

Both the real and the imaginary parts of w are different from 
those for the bi-Maxwellian distribution as well as for the 
kappa-Maxwellian distribution. The power-law dependence 
of the ion Landau damping term (third term within the curly 
bracket in Im to) on Re Wj/knVm, when Re (Oj/k^Vf^ 1, is 
also different from that for the kappa-Maxwellian distribu- 
tion. This leads to an instability condition that is different not 
only from the condition for the bi-Maxwellian distribution 
but also from the condition for the kappa-Maxwellian distri- 
bution. As in the cases of bi-Maxwellian and kappa- 
Maxwellian distributions, we ignore |(A:1//k||)(V^0/n,)| and 
the effects of finite ion temperature (i.e., we neglect bt and 
ion Landau damping term). Then, 

Re w, = 
2    2' 

(2K,i+l)/(2#Cn-l) + ifcip: 
(97) 

Im to 

Re to, 

k2
lP;- 1/(2*1,-1) 

(2/cll+l)/(2*ji-l) + *2
lPs

2 

J_ 2/C. + 2A- Vd 

2 2/C||- 1 to*, 
(98) 

A comparison of Eq. (97) with Eqs. (55) and (75) shows that 
Re oi, is reduced from its value for the bi-Maxwellian distri- 
bution, as (2*H+1)/(2K||-1)> 1, and the reduced value is 
different from that for the kappa-Maxwellian distribution. 
When rje >0 and the first term within the parentheses of Eq. 
(98) can be neglected in comparison to rjeVl2, the instability 
condition (Im oi>0) for the current-driven drift wave is 

Vw> 
2*n - 1 
2K« + 2/ 2k V, (99) 

Thus the threshold current for instability is reduced by the 
factor (2KI;-1)/(2/C,|+2), when compared with that for the 
bi-Maxwellian distribution [see Eq. (57)]. Also, the reduction 
factor is different from that for the kappa-Maxwellian distri- 
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bution [see Eq. (77)]. In the absence of current (Vd=0) and 
for J7,n>0, the instability condition is 

k\p]-\l(2K,-\) 

2%'<(2*ll+l)/(2*ll-l) + *2
lP

2' 

If J7<.||=0, the instability condition is satisfied for k\p] 
> 1/(2KU- 1), which is more stringent than the condition for 
the bi-Maxwellian distribution and is different from that for 
the kappa-Maxwellian distribution. 

Next, we consider the ion-acoustic waves for which 
u>,• — ktlcs»u>+e. Assuming further that k\p2

s<%L\, the disper- 
sion relation that follows from Eq. (91) is 

2K:,- 1 
,*?c? +,ViF(*"W 

kuVr 
• + A 2^11 to, 

X    1 + 
0)7    ^("»+: 

2/Cii 

1 *x, = 0 

and its approximate solution for A2 > 0 is 

Re to, = A.Kktfs, 

(101) 

(102) 

Im to, 

Re to, 
-F{K^—— 

2/Cii+ 1 

2K« - 1 \ 7,1,   "' 

=*P-A. 

A2 
* 

1 + 
2#cii - 1 Tit 

-(«ll+2) 

where 

A! = 
2*»-l 
2/C|, + 1 

A2. 

(103) 

(104) 

Both the real and the imaginary parts of to are different from 
their values for the bi-Maxwellian distribution as well as the 
kappa-Maxwellian distribution. The power-law dependence 
of the ion Landau damping term (second term within the 
braces in Im to) on Tel[/TiU, when 7"e||/7*l1|^> 1, results in larger 
ion Landau damping rate than that for the bi-Maxwellian 
distribution, and it is different from the power-law depen- 
dence for the kappa-Maxwellian distribution. The threshold 
value V°d for instability is 

2S.A. 
2*1, + 1 / m 

2*1, - 1 

1/2 
'e\\ A 2 

3/2 

X    1 + 
2* - 1 T, 

-(«|l+2) 

(105) 

In the absence of velocity shear (A2=l), A2=(2*|, 
- l)/(2*n+ 1). If we take *n=3, for example, then A2 =5/7. 
For electron-proton plasma, Eq. (105) yields V^/cs=14.4, 
7.7, 4.64, and 2.29 for Ten/Tm=l0, 15, 20, and 30, respec- 
tively. For a smaller (larger) value of *„, the values of vdlcs 

are larger (smaller). 

In the presence of velocity shear (A2^ 1), minimizing 
Eq. (105) with respect to A* we find that the minimum value 
of V^/Cj is obtained for A„ =AKm, where AKm is determined 

(100)       from 

1+- Tel 

2*i,-l T» 

: *3 
2* +1 l/2/T   \3/2 

1 e\\ 

2*II - 1 \me 

'2*11+  1   7"„, 
x A*   - 3 A"   . 

2*„-17\ll   "*"      I   W 

(106) 

With the use of Eq. (106) in Eq. (105) the minimum value of 
V^/Cj is obtained as 

[(2*l[ + 2)/(2*ll-l)](rf„/7-,ll)A-;,, 

[(2*jl+l)/(2*ll-l)](7fll/7,l)A
2 

(107) 

For electron-proton plasma and for *((=3, Eq. (106) yields 
\Kr= 1.916, 1.614, 1.429, and 1.203 for 7yrfl=10, 15, 20, 
and 30, respectively, i.e., AKm increases as TtU/Tin decreases. 
Substituting these values into Eq. (107) we find the mini- 
mum values of V°d/cs = 2.25, 1.89, 1.67, and 1.40 for 
7",||/rj||=10, 15, 20, and 30, respectively. For a smaller 
(larger) value of *h, the minimum values of V°dlcs are larger 
(smaller). 

A comparison of the results for the product bi-Lorentzian 
distribution with the corresponding results for the bi- 
Maxwellian and the kappa-Maxwellian distributions show 
that the threshold currents for ion-acoustic instability in the 
absence of velocity shear are larger than those for the bi- 
Maxwellian distribution, but are somewhat smaller than 
those for the kappa-Maxwellian distribution. In the presence 
of velocity shear, the threshold currents are more signifi- 
cantly reduced for smaller values of Te^l T^, as in the cases of 
bi-Maxwellian and kappa-Maxwellian distributions. The re- 
duced threshold currents are still larger than those for the 
bi-Maxwellian distribution, but are somewhat smaller than 
those for the kappa-Maxwellian distribution. 

The shear-driven ion-acoustic instability, which is ex- 
cited when A2 <0 (i.e., A2<0), is now described by 

*»isi\K)*fs- (108) 

When compared with the bi-Maxwellian result [see Eq. 
(64)], the growth rate of the instability is reduced by the 
factor [(2*n-l)/(2*,|+l)]1/2 for the same value of |A|. 
However, the growth rate is somewhat larger than that 
for the kappa-Maxwellian distribution [see Eq.  (86)], as 
|A*|>|AJ. 

Referring to  Eq.   (91),  the  ion  temperature  gradient 
driven instability is now described by 

2*n+l  , k2c2
s 

2*1, - 1      w; 

with the solution 

(109) 
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«,= -(! ±iV3) 
2KII - 1 k2c2 

2/C||+ 1 (w„,%|) 

i 3 

*»*iVn\- (110) 

The upper sign (+) is for wt,77,n>0 and the lower sign (-) is 

for w4,57,11 <0. The growth rate of the instability is reduced 

by the factor [(2K,|— l)/(2/C|,+1)]1'3, when compared with 
that for the bi-Maxwellian distribution [see Eq. (66)], and it 
is slightly larger than that for the kappa-Maxwellian distri- 
bution [see Eq. (88)], other parameters remaining the same, 

(d) Bi-Lorentzian Plasma: Since be = 0, we keep only the 
p=0 term in the electron sum in Eq. (47). Consequently, we 
need to know the series expansion of ZK 0(<ie) for s<, <£. 1. For 
the ions, we keep p=0 and p= 1 terms in Eq. (47) in order to 
retain effects of order bt. Hence, we need to know the 
asymptotic expansions of Z^K) ar>d Z^s,) for s,> 1. As 
we mentioned earlier, Z^Q is same as Z*M(s) and so its series 
and asymptotic expansions are given by Eqs. (67) and (68), 
respectively [see the discussion following Eqs. (67) and 
(68)]. The asymptotic expansion of Z^(s,)can be derived 
from the asymptotic expansion of Z® Q(<;,) by using the rela- 
tion (44). We thus have 

W = ' 
;'\7JT(K) 

K"T(IC-1/2) 
(1 S? + 

XI 
2/c+l 

3 K 
-<;:+••• 

2K-1 
•) s. 

kl«>. (in: 

z^(s,): 
I\TTY(K) 

Z^S,): 

KmT(K -1/2) (1 + </*) 

1 /                K        1 
--    1+- --+••• 

s,\      2K-3 s" 

/\'-n-r(/c) 1 

K
1/2

F(K-1/2) (1+S?/K) 

|s,l»l-      (H2) 

2(K-1) 1 
1 + 

I 

2K-3 s,\      2K-5 s; 
k »i • 

(113) 

Using the expansions in Eq. (47), assuming k\MI<g. 1, and 
keeping only the leading terms, as before, we find 

J 

2K- U.    kLV'eQ 

2/c-3 *„n. ~i+*:p;--[>-W> + y]- 
k±V'm    W*'Y,^ 2K-1 
k„ ilj     w, \ 2K-5 

k2c2 K
\\ cs 

+ i\j-F(K)—- 

K"T(K-1/2)\2K-3 

The simplified dispersion relation in the drift wave approximation (w,~ca^^k^f,) is 

:il4) 

(115) 

2K- 

2K-: 

k,   V'0\ ,    ,      0>*e -ft m 

*ll   "<•/ W; V   2 *||V7-,|| 

2« t,V,_H_l 
2K- 31       *,,nJ     w, V      277'1 

+; -F(K)  1+l/f-2J%'-2K-2^ 

1 wz 

2,,2   "I'V/X 

1 

LK     J K\\ VTi 

i + 
I 

LK     J K,i VTJI 

-(it+1) 

= 0. (116) 

We notice that, except for the contribution proportional to 

fc,77(i in the ion Landau damping term, Eq. (116) is identical 
to the corresponding dispersion relation for the kappa- 

Maxwellian distribution [see Eq. (71)]. So, in the limit when 
bir)il•<!, the stability properties of the drift waves for bi- 

Lorentzian distributions are same as those for the kappa- 
Maxwellian distribution [see Eqs. (72)-(78)]. 

For the ion-acoustic waves (G)i~k]fs~3><i}llie) we assume, 

as before, that k2
±p

2<z: 1, and the dispersion relation that fol- 
lows is 
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2K- 1 k2c2 

2K-3 u)~ 2F{K)2Z^ 

T,  k Vr 

1 + 
2 AC   3 ktlVn 

^11^7*11 

-(K+\)' 

= 0   (117) 

which is identical to the dispersion relation (79) for the 
kappa-Maxwellian distribution. Hence, the analysis of the 
ion-acoustic wave dispersion relation for bi-Lorentzian dis- 
tribution is same as that for the kappa-Maxwellian distribu- 
tion [see Eqs. (80)-(85)]. We mention here that the ion- 
acoustic instability for Lorentzian distribution (i.e., 
TM=Tal) and in the absence of velocity shear has been nu- 
merically analyzed by Meng et al.~ The analyses for the 
shear-driven instability and the ion temperature-gradient 
driven instability for bi-Lorentzian distribution also remain 
the same as those for the kappa-Maxwellian distribution [see 
Eqs. (86H88)]. 

V. SUMMARY AND DISCUSSIONS 

We have presented the linear dispersion relations for 
electrostatic waves in spatially inhomogeneous, current- 
carrying anisotropic plasma, where the equilibrium particle 
velocity distributions are modeled by various Lorentzian 
(kappa) distribution functions and by the well-known bi- 
Maxwellian distribution. Spatial inhomogeneities, assumed 
to be weak, include density gradients, temperature gradients, 
and gradients (shear) in the parallel (to the ambient magnetic 
field) flow velocities associated with the current. In order to 
illustrate the distinguishing features of the kappa distribu- 
tions, stability properties of the low frequency (lower than 
ion cyclotron frequency) and long perpendicular wavelength 
(longer than ion gyroradius) modes have been studied in de- 
tail, and the results have been contrasted with those for the 
bi-Maxwellian distribution. Specific attention has been given 
to the drift waves, the current-driven ion-acoustic waves in 
the presence of velocity shear, the velocity shear-driven ion- 
acoustic modes, and the ion temperature gradient driven 
modes. 

The growth rates of the drift wave instability and the 
current-driven ion-acoustic instability, both of which rely on 
wave-particle interactions for their excitation, are reduced 
from their values for the bi-Maxwellian distribution due to 
larger ion Landau damping rates associated with the kappa 
distributions. For the same reason, the excitation conditions 
for these two instabilities are more stringent in the case of 
the kappa distributions. The dominant ion Landau damping 
rates are proportional to Im Z' (prime on Z denotes deriva- 
tive with respect to its argument), which have power-law 
dependence on Re tHil(kuVTjl) » 1 for the kappa distributions. 
This is in sharp contrast with the exponential dependence for 
the bi-Maxwellian distribution. As a result, the ion Landau 
damping rates of plasma waves that are excited in the 
Re W,/(^|VV,II)S> 1 regime are larger in kappa-distribution 
plasmas than in bi-Maxwellian plasma. Figure 2 shows the 
marked differences in the behavior of Im Z' 's associated with 
the different velocity distributions, when Re(di/(k,yTJ'^l. 
A particularly important consequence of the enhanced ion 

Landau damping rates is that the threshold currents for the 
ion-acoustic instability in kappa-distribution plasmas are 
larger than those in the bi-Maxwellian plasma, even in the 
presence of shear in the parallel flow velocity. Relativistic 
effects associated with the suprathermal ions that participate 
in the considered instabilities have been neglected in the 
present nonrelativistic treatment under the assumption 
(Ta,Tix)<Cm,c2. For a recent paper on the modeling of 
energetic particles by relativistic kappa distribution, see 
Ref. 27. 

The stability characteristics of the other two instabilities 
(shear-driven ion-acoustic instability and ion temperature- 
gradient driven instability), which do not rely on wave- 
particle interactions and for which Landau damping/growth 
terms in the dispersion relation may be neglected, can be 
better understood in terms of (nei/n0) and (rf,,/n0), where nel 

and nn are the density perturbations, since the dispersion 
relations are obtained by demanding quasineutrality (nel 

= nn). (nel/n0) and (nn/nu) are also helpful in understanding 
the origin of the reduced frequencies of the drift waves and 
the ion-acoustic waves in kappa-distribution plasmas. Under 
the conditions assumed in Sec. IV, the electron density per- 
turbations for the different equilibrium distributions are 

(n«i/«o) = «(*L.*II) 
r 

e<fii/Teb, for BM 

[(2K - 1 )/(2K - 3)](e^1/7,,„), for KM 

[(2K„+ 1)/(2K„- l)](*&/7j. forPBL 

(Same as the expression for KM), for BL, 

:ii8) 

where a{k1,ku)=\+(k1/kll){V'e0/ile). The differences in the 
expressions can be traced to the differences in the series 
expansions of Z for tae/(knVTei) -C 1 and to the differences in 
the relations of <%v to TeU. The ion density perturbation, on the 

>\ 

o 8 

FIG. 2. Comparison of -ImZ' vs x, where x = Reu>ll(k,VT,l). Solid curve 
represents -ImZ6"', dashed curve represents -ImZ^KM for K=3, dashed- 
dotted curve represents -ImZ^PBL for K. =3, and the dotted curve represents 
-ImZ' ,BL for K=3. As noted in the text, Z'n

BL=Z'KM. 
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other hand, is same for all the distributions and is given by 

—7T-—U + %) 
A:   11,      W; 

k2V2 

w, 

(119) 

when bt and k2
Lp

2 are neglected for simplicity. This is due to 
the fact that the leading term in the asymptotic expansions of 
Z for ii)jl(k\{VTft)'3> 1 is the same for all the distributions. 
Equation (118) shows that the adiabatic response of the elec- 
trons to the electrostatic potential perturbation in kappa- 
distribution plasmas is reduced from its value in bi- 
Maxwellian plasma. The reduced adiabatic response of the 
electrons explains the reduction of the growth rates of the 
shear-driven ion-acoustic instability and the ion temperature- 
gradient driven instability as well as the reduction of the 
frequencies of the drift waves and the ion-acoustic waves in 
kappa-distribution plasmas. 
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